Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice.
نویسندگان
چکیده
Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mice were treated with the LXR agonist GW-3965 for 10 days. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp studies. Hepatic glucose production (HGP) and metabolic clearance rate (MCR) of glucose were determined with stable isotope techniques. Blood glucose and hepatic and whole body insulin sensitivity remained unaffected upon treatment in lean mice, despite increased hepatic triglyceride contents (61.7 +/- 7.2 vs. 12.1 +/- 2.0 nmol/mg liver, P < 0.05). In ob/ob mice, LXR activation resulted in lower blood glucose levels and significantly improved whole body insulin sensitivity. GW-3965 treatment did not affect HGP under normo- and hyperinsulinemic conditions, despite increased hepatic triglyceride contents (221 +/- 13 vs. 176 +/- 19 nmol/mg liver, P < 0.05). Clamped MCR increased upon GW-3965 treatment (18.2 +/- 1.0 vs. 14.3 +/- 1.4 ml x kg(-1) x min(-1), P = 0.05). LXR activation increased white adipose tissue mRNA levels of Glut4, Acc1 and Fasin ob/ob mice only. In conclusion, LXR-induced blood glucose lowering in ob/ob mice was attributable to increased peripheral glucose uptake and metabolism, physiologically reflected in a slightly improved insulin sensitivity. Remarkably, steatosis associated with LXR activation did not affect hepatic insulin sensitivity.
منابع مشابه
Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis and is less sensitive to the suppressive effects of insulin
Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis and is less sensitive to the suppressive effects of insulin Less suppression of VLDL production by insulin in ob/ob mice 66 ABSTRACT Type 2 diabetes mellitus in humans is associated with increased de novo lipogenesis (DNL), increased fatty acid (FA)-flux from peripheral tissues, decreased FA oxidation and hep...
متن کاملHepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis but is less sensitive to the suppressive effects of insulin.
Type 2 diabetes in humans is associated with increased de novo lipogenesis (DNL), increased fatty acid (FA) fluxes, decreased FA oxidation, and hepatic steatosis. In this condition, VLDL production is increased and resistant to suppressive effects of insulin. The relationships between hepatic FA metabolism, steatosis, and VLDL production are incompletely understood. We investigated VLDL-triglyc...
متن کاملThe Amelioration of Hepatic Steatosis by Thyroid Hormone Receptor Agonists Is Insufficient to Restore Insulin Sensitivity in Ob/Ob Mice
Thyroid hormone receptor (TR) agonists have been proposed as therapeutic agents to treat non-alcoholic fatty liver disease (NAFLD) and insulin resistance. We investigated the ability of the TR agonists GC-1 and KB2115 to reduce hepatic steatosis in ob/ob mice. Both compounds markedly reduced hepatic triglyceride levels and ameliorated hepatic steatosis. However, the amelioration of fatty liver ...
متن کاملGlycerol-3-Phosphate Acyltransferase 1 Deficiency in ob/ob Mice Diminishes Hepatic Steatosis but Does Not Protect Against Insulin Resistance or Obesity
OBJECTIVE Hepatic steatosis is strongly associated with insulin resistance, but a causal role has not been established. In ob/ob mice, sterol regulatory element binding protein 1 (SREBP1) mediates the induction of steatosis by upregulating target genes, including glycerol-3-phosphate acyltransferase-1 (Gpat1), which catalyzes the first and committed step in the pathway of glycerolipid synthesis...
متن کاملDietary fish oil exerts hypolipidemic effects in lean and insulin sensitizing effects in obese LDLR-/- mice.
Obesity is often associated with dyslipidemia, insulin resistance, and hypertension. Together, these metabolic perturbations greatly increase the risk of developing cardiovascular disease and diabetes. Although fish oil is a well-established hypolipidemic agent, the mechanisms by which it mediates its lipid-lowering effects are not clear. In addition, it has not been established whether dietary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 289 5 شماره
صفحات -
تاریخ انتشار 2005